455,503 views
16 votes
16 votes
Given a and b are the first-quadrant angles, sin a=5/13, and cos b=3/5, evaluate sin(a+b)1) -33/652) 33/653) 63/65

User Manova
by
2.9k points

1 Answer

10 votes
10 votes

We know that angles a and b are in the first quadrant. We also know this values:


\begin{gathered} \sin a=(5)/(13) \\ \cos b=(3)/(5) \end{gathered}

We have to find sin(a+b).

We can use the following identity:


\sin (a+b)=\sin a\cdot\cos b+\cos a\cdot\sin b

For the second term, we can replace the factors with another identity:


\sin (a+b)=\sin a\cdot\cos b+\sqrt[]{1-\sin^2a}\cdot\sqrt[]{1-\cos^2b}

Now we know all the terms from the right side of the equation and we can calculate:


\begin{gathered} \sin (a+b)=\sin a\cdot\cos b+\sqrt[]{1-\sin^2a}\cdot\sqrt[]{1-\cos^2b} \\ \sin (a+b)=(5)/(13)\cdot(3)/(5)+\sqrt[]{1-((5)/(13))^2}\cdot\sqrt[]{1-((3)/(5))^2} \\ \sin (a+b)=(15)/(65)+\sqrt[]{1-(25)/(169)}\cdot\sqrt[]{1-(9)/(25)} \\ \sin (a+b)=(15)/(65)+\sqrt[]{(169-25)/(169)}\cdot\sqrt[]{(25-9)/(25)} \\ \sin (a+b)=(15)/(65)+\sqrt[]{(144)/(169)}\cdot\sqrt[]{(16)/(25)} \\ \sin (a+b)=(15)/(65)+(12)/(13)\cdot(4)/(5) \\ \sin (a+b)=(15)/(65)+(48)/(65) \\ \sin (a+b)=(63)/(65) \end{gathered}

Answer: sin(a+b) = 63/65

User Nagashree Hs
by
3.0k points