68.5k views
0 votes
Find the vertices and foci of the hyperbola with equation x squared over sixteen minus y squared over forty eight = 1.

User Abhas
by
7.8k points

2 Answers

0 votes

\bf \cfrac{(x-{{ h}})^2}{{{ a}}^2}-\cfrac{(y-{{ k}})^2}{{{ b}}^2}=1 \qquad center\ ({{ h}},{{ k}})\qquad vertices\ ({{ h}}\pm a, {{ k}}) \\ \quad \\\\ foci\to h\pm c\quad where\quad c=√(a^2+b^2)\to h\pm √(a^2+b^2)\\ ----------------------------\\ \textit{now, let's see your hyperbola} \\ \quad \\ \cfrac{x^2}{16}-\cfrac{y^2}{48}=1\implies \cfrac{(x-0)^2}{4^2}-\cfrac{(y-0)^2}{(√(48))^2}=1

and surely, you can see where the center is at, thus what h,k are,
and what "a" and "b" components are as well :)
User Julio Faerman
by
7.5k points
3 votes

Answer:

Vertices are (4,0),(-4,0).

Foci are (8,0), (-8,0).

Explanation:

Given : The hyperbola equation
(x^2)/(16)-(y^2)/(48)=1

To find : The vertices and foci of the hyperbola ?

Solution :

The general form of the hyperbola equation is


\cfrac{(x-{{ h}})^2}{{{ a}}^2}-\cfrac{(y-{{ k}})^2}{{{ b}}^2}=1

Where, (h,k)=(0,0) is the center.


a^2=16\\a=4 and
b^2=48\\b=√(48)

The vertices of the hyperbola is,


V=(h\pm a,k)

Substitute the value,


V=(0\pm 4,0)


V=(4,0),(-4,0)

Therefore, Vertices are (4,0),(-4,0).

Foci is
F=(\pm c,0)

Where,
c=√(a^2+b^2)


c=\sqrt{4^2+√(48)^2}


c=√(16+48)


c=√(64)


c=8


F=(\pm 8,0)

Therefore, Foci are (8,0), (-8,0).

User Prav
by
7.9k points