79.9k views
1 vote
Integral of 1/sqrt (81-225x^2)

User Furniture
by
8.6k points

1 Answer

2 votes

\displaystyle\int(\mathrm dx)/(√(81-225x^2))

Let
x=\frac9{15}\sin t, so that
\mathrm dx=\frac9{15}\cos t\,\mathrm dt and the integral becomes


\displaystyle\int\frac{\frac9{15}\cos t}{\sqrt{81-225\left(\frac9{15}\sin t\right)^2}}\,\mathrm dt

\displaystyle\int\frac{\frac9{15}\cos t}{\sqrt{81-225*(81)/(225)\sin^2 t}}\,\mathrm dt

\displaystyle\frac1{15}\int(\cos t)/(√(1-\sin^2 t))\,\mathrm dt

\displaystyle\frac1{15}\int(\cos t)/(√(\cos^2 t))\,\mathrm dt

\displaystyle\frac1{15}\int(\cos t)/(|\cos t|)\,\mathrm dt

When
\cos t>0, you have
|\cos t|=\cos t. Under these conditions, you can write


\displaystyle\frac1{15}\int(\cos t)/(\cos t)\,\mathrm dt=\frac1{15}\int\mathrm dt=\frac t{15}+C

and back-substituting yields


\frac{\arcsin\frac{15x}9}{15}+C=\frac{\arcsin\frac{5x}3}{15}+C
User Donghee
by
8.9k points