Answer
x = 2, and y = 3
Step-by-step explanation:
given the following linear equation
7x - 6y = -4------------- equation 1
14x + 5y = 43 ---------- equation 2
This equation can be solve simultaneously by using elimination method
Step 1 : eliminate x
To eliminate x, multiply equation 1 by 2 qnd equation 2 by 1
7x * 2 - 6y * 2 = -4 * 2
14x * 1 + 5y * 1 = 43 * 1
14x - 12y = -8 ----------------- equation 3
14x + 5y = 43------------------ equation 4
Substract equation 4 from3
(14x - 14x) - 12 - 5y = -8 - 43
0 - 17y = -51
-17y = -51
Divide both sides by -17
-17y/-17 = -51/-17
y = 51/17
y = 3
To find x, put the value of y into equation 1
7x - 6y = -4
7x - 6(3) = -4
7x - 18 = -4
Collect the like terms
7x = -4 + 18
7x = 14
Divide both sides by 7
7x/7 = 14/7
x = 2
Therefore, x = 2 and y = 3