45.6k views
5 votes
Verify implicit solution 2xydx+(x^2-y)dy=0; -2x^2y+y^2)=1

User LHM
by
8.7k points

1 Answer

3 votes
If
-2x^2y+y^2=1, taking the derivative of both sides wrt
x gives


-4xy-2x^2(\mathrm dy)/(\mathrm dx)+2y(\mathrm dy)/(\mathrm dx)=0

Solving for
(\mathrm dy)/(\mathrm dx) gives


-4xy+(-2x^2+2y)(\mathrm dy)/(\mathrm dx)=0

(-2x^2+2y)(\mathrm dy)/(\mathrm dx)=4xy

(-2x^2+2y)\mathrm dy=4xy\,\mathrm dx

(-x^2+y)\mathrm dy=2xy\,\mathrm dx

0=2xy\,\mathrm dx+(x^2-y)\mathrm dy
User Christian Rondeau
by
7.9k points

Related questions

asked Aug 12, 2017 156k views
Bandreas asked Aug 12, 2017
by Bandreas
7.9k points
1 answer
3 votes
156k views