75.6k views
2 votes
Use Gauss-Jordan elimination to solve the following linear system.

–x + 6y = 20
–x + 3y = 8

A. (–2,–2)
B. (3,2)
C. (4,4)
D. (0,5)

User Navia
by
7.8k points

2 Answers

2 votes
the answer would be C. (4,4)
User Shebeer
by
8.0k points
2 votes

Answer:

The correct option is C) (4,4)

Explanation:

Given linear system is :


-x+6y=20


-x+3y=8

Solve using Gauss - jordan elimination

It is an algorithm that can be used to solve systems of linear equations and to find the inverse of any invertible matrix.


\:\begin{pmatrix}-1&6&20\\ \:-1&3&8\end{pmatrix}


\mathrm{Reduce\:matrix\:to\:row\:echelon\:form}\:\begin{pmatrix}a&\cdots &b\\ 0&\ddots &\vdots \\ 0&0&c\end{pmatrix}

Divide row(1) by -1


\begin{pmatrix}1&-6&-20\\ \:-1&3&8\end{pmatrix}

Add row(1) to row(2)


\begin{pmatrix}1&-6&-20\\ \:0&-3&-12\end{pmatrix}

Divide row(2) by -3


\begin{pmatrix}1&-6&-20\\ \:0&1&4\end{pmatrix}

Add (6 * row(2) ) to row(1)


=\begin{pmatrix}1&0&4\\ 0&1&4\end{pmatrix}

Hence the corresponding values of x and y are (4, 4)

Therefore, the correct option is C) (4,4)

User MFP
by
8.3k points