83.3k views
1 vote
The midpoint of AB is at (3,7) and A is at (0,-5). Where is B located?

User Jodag
by
8.7k points

1 Answer

1 vote

\bf \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ \square }}\quad ,&{{ \square }})\quad % (c,d) &({{ \square }}\quad ,&{{ \square }}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)\qquad thus \\ ----------------------------\\
\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ 0}}\quad ,&{{ -5}})\quad % (c,d) B&({{ \square }}\quad ,&{{ \square }}) \end{array}\qquad % coordinates of midpoint (3,7)\impliedby midpoint\qquad thus \\ \quad \\ \left(\cfrac{{{ x_2 }} + {{ 0}}}{2}=3\quad ,\quad \cfrac{{{ y_2 }} + {{( -5)}}}{2}=7 \right)\to \begin{cases} \cfrac{{{ x_2 }} + {{ 0}}}{2}=3 \\ \quad \\ \cfrac{{{ y_2 }} + {{ -5}}}{2}=7 \end{cases} \\ \quad \\ solve\ for\ x_2\ and\ y_2
User Mike Stonis
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories