149k views
4 votes
IntegralSin4x× sin 8x dx

User Alex Vasi
by
8.3k points

1 Answer

5 votes
Recall that


\cos(x\pm y)=\cos x\cos y\mp\sin x\sin y

This means


\cos12x=\cos4x\cos8x-\sin4x\sin8x

\cos4x=\cos4x\cos8x+\sin4x\sin8x

which then means


\sin4x\sin8x=\frac{\cos4x-\cos12x}2

So,


\displaystyle\int\sin4x\sin8x\,\mathrm dx=\frac12\int(\cos4x-\cos12x)\,\mathrm dx

=\frac12\left(\frac14\sin4x-\frac1{12}\sin12x\right)+C

=\frac18\sin4x-\frac1{24}\sin12x+C
User Brendan Grant
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories