149k views
4 votes
IntegralSin4x× sin 8x dx

User Alex Vasi
by
8.3k points

1 Answer

5 votes
Recall that


\cos(x\pm y)=\cos x\cos y\mp\sin x\sin y

This means


\cos12x=\cos4x\cos8x-\sin4x\sin8x

\cos4x=\cos4x\cos8x+\sin4x\sin8x

which then means


\sin4x\sin8x=\frac{\cos4x-\cos12x}2

So,


\displaystyle\int\sin4x\sin8x\,\mathrm dx=\frac12\int(\cos4x-\cos12x)\,\mathrm dx

=\frac12\left(\frac14\sin4x-\frac1{12}\sin12x\right)+C

=\frac18\sin4x-\frac1{24}\sin12x+C
User Brendan Grant
by
8.2k points