3 combinations:
3 quarters and 6 dimes
5 quarters and 1 dime
1 quarter and 11 dimes
1) Remember that a dime corresponds to $0.10 and a quarter to $0.25. And the value we want to find is $1.35
2) As we can see the last digit on $1.35 is 5 then we can infer that we're going to need an odd number of quarters ($0.25). Also, notice that we need whole numbers for the quantities of each coin. In other words, multiples of 0.10 and 0.25 whose sum yields to $1.35. So let's do it step by step:
So, we can write out the following list of combinations:
q (quarter) 3 q = 3 x 0.25 = $ 0.75
d (dimes) 6 d = 6 x 0.10 = $ 0.60
0.60 + 0.75 = 1.35
2.2) Another possible combination:
q (quarter) 5 q = 5 x 0.25 = $ 1.25
d (dimes) 1 d = 1 x 0.10 = $ 0.10
0.10+1.25= 1.35
2.3)
q (quarter) 1 q = 1 x 0.25 = $ 0.25
d (dimes) 11 d = 11x 0.10 = $ 1.10
0.25+1.10 = 1.35
3) Hence, considering that we need to combine dimes and quarters and their sum must be lesser than $1.35 We have three combinations with whole numbers of dimes and quarters:
3 quarters and 6 dimes
5 quarters and 1 dime
1 quarter and 11 dimes