149k views
4 votes
Does \(v^\top A v = 0\) for all vectors v imply A is skew symmetric?

User Lufc
by
7.2k points

1 Answer

2 votes
Let
\mathbf v=\mathbf x+\mathbf y. Then


0=\left(\mathbf v^\top\mathbf{Av}\right)^\top

0=(\mathbf x+\mathbf y)^\top\mathbf A^\top(\mathbf x+\mathbf y)

0=\mathbf x^\top\mathbf A^\top\mathbf x+\mathbf x^\top\mathbf A^\top\mathbf y+\mathbf y^\top\mathbf A^\top\mathbf x+\mathbf y^\top\mathbf A^\top\mathbf y

0=\mathbf x^\top\mathbf A^\top\mathbf y+\mathbf y^\top\mathbf A^\top\mathbf x

\mathbf x^\top\mathbf A^\top\mathbf y=-\mathbf y^\top\mathbf A^\top\mathbf x

\mathbf x^\top\mathbf A^\top\mathbf y=-\left(\mathbf x^\top\mathbf{Ay}\right)^\top

which requires
\mathbf A=-\mathbf A^\top, so the answer is yes.
User Ajtamwojtek
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.