149k views
4 votes
Does \(v^\top A v = 0\) for all vectors v imply A is skew symmetric?

User Lufc
by
7.2k points

1 Answer

2 votes
Let
\mathbf v=\mathbf x+\mathbf y. Then


0=\left(\mathbf v^\top\mathbf{Av}\right)^\top

0=(\mathbf x+\mathbf y)^\top\mathbf A^\top(\mathbf x+\mathbf y)

0=\mathbf x^\top\mathbf A^\top\mathbf x+\mathbf x^\top\mathbf A^\top\mathbf y+\mathbf y^\top\mathbf A^\top\mathbf x+\mathbf y^\top\mathbf A^\top\mathbf y

0=\mathbf x^\top\mathbf A^\top\mathbf y+\mathbf y^\top\mathbf A^\top\mathbf x

\mathbf x^\top\mathbf A^\top\mathbf y=-\mathbf y^\top\mathbf A^\top\mathbf x

\mathbf x^\top\mathbf A^\top\mathbf y=-\left(\mathbf x^\top\mathbf{Ay}\right)^\top

which requires
\mathbf A=-\mathbf A^\top, so the answer is yes.
User Ajtamwojtek
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories