Let

denote a data point taken from the distribution, where

, and let

denote the average.
You want to find

First, let's recall a few things. The PDF of a normal distribution with mean

and variance

is

Each of the

are presumably independently selected, so they are i.i.d. random variables.
The MGF of a normal distribution is



The MGF of a linear combination of i.i.d. random variables is

In this case, each

. This product of MGFs reduces to an MGF of a normal distribution because the

are i.i.d..


which is indeed the MGF of a normal distribution with mean

and variance

So, the PDF of

, given that

and

, is

Now,

or, using the CDF of

,
