712 views
0 votes
A set of normally distributed data has a mean of 485 and a standard deviation of 11.6. Find the probability of randomly selecting 40 values and getting a mean less than 490.

User Pramuditha
by
8.1k points

2 Answers

4 votes

Answer:0.9968

Explanation:

prob/stats

User Geograph
by
7.7k points
2 votes
Let
X_i denote a data point taken from the distribution, where
1\le i\le40, and let
Y denote the average.

You want to find


\mathbb P\left(\displaystyle\frac1{40}\sum_(i=1)^(40)X_i<490\right)=\mathbb P(Y<490)

First, let's recall a few things. The PDF of a normal distribution with mean
\mu and variance
\sigma^2 is


f(x;\mu,\sigma^2)=\displaystyle\frac1{\sigma√(2\pi)}\exp\left(-((x-\mu)^2)/(2\sigma^2)\right)

Each of the
X_i are presumably independently selected, so they are i.i.d. random variables.

The MGF of a normal distribution is


M_X(t)=\mathbb E(e^(tX))

M_X(t)=\displaystyle\int_(-\infty)^\infty e^(tx)f_X(x)\,\mathrm dx

M_X(t)=\exp\left(\mu t+\frac12\sigma^2t^2\right)

The MGF of a linear combination of i.i.d. random variables is


M_(c_1X_1+\cdots+c_nX_n)=M_(X_1)(c_1t)*\cdots* M_(X_n)(c_nt)=\displaystyle\prod_(i=1)^nM_(X_i)(c_it)

In this case, each
c_i=\frac1{40}. This product of MGFs reduces to an MGF of a normal distribution because the
X_i are i.i.d..


M_Y(t)=\displaystyle\prod_(i=1)^(40)M_(X_i)(t)=\exp\left(\mu\left(\frac t{40}\right)+\frac12\sigma^2\left(\frac t{40}\right)^2\right)*\cdots*\exp\left(\mu\left(\frac t{40}\right)+\frac12\sigma^2\left(\frac t{40}\right)^2\right)

M_Y(t)=\exp\left(\mu t+\frac12\left(\frac\sigma{√(40)}\right)^2t^2\right)

which is indeed the MGF of a normal distribution with mean
\displaystyle\mu\sum_(i=1)^(40)\frac1{40}=\mu and variance
\sigma^2\displaystyle\sum_(i=1)^(40)\left(\frac1{40}\right)^2=(\sigma^2)/(40)

So, the PDF of
Y, given that
\mu=485 and
\sigma=11.6, is


f_Y(y)=\displaystyle\frac1{(11.6)/(√(40))√(2\pi)}\exp\left(-((y-485)^2)/(2\left((11.6)/(√(40))\right)^2)\right)

Now,


\mathbb P(Y<490)=\displaystyle\int_(-\infty)^(490)f(y)\,\mathrm dy

or, using the CDF of
Y,


\mathbb P(Y<490)=F_Y(490)\approx0.9968
User Tashi
by
7.9k points