53.6k views
5 votes
CALC HELP!
16
18
8
32

CALC HELP! 16 18 8 32-example-1
User Datha
by
6.1k points

1 Answer

7 votes

Answer:


\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 18

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Property [Flipping Integral]:
\displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Splitting Integral]:
\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^8_2 {g(x)} \, dx = 13


\displaystyle \int\limits^8_6 {g(x)} \, dx = -3


\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx

Step 2: Integrate

  1. [Integral] Rewrite [Integration Property - Flipping Integral]:
    \displaystyle \int\limits^8_6 {g(x)} \, dx = -3 \rightarrow \int\limits^6_8 {g(x)} \, dx = 3
  2. [Integral] Rewrite [Integration Property - Splitting Integral]:
    \displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 2 + \int\limits^8_2 {g(x)} \, dx + \int\limits^6_8 {g(x)} \, dx
  3. [Integrals] Substitute:
    \displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 2 + 13 + 3
  4. Simplify:
    \displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 18

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User SRR
by
6.3k points