53.7k views
5 votes
CALC HELP!
16
18
8
32

CALC HELP! 16 18 8 32-example-1
User Datha
by
8.3k points

1 Answer

7 votes

Answer:


\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 18

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Property [Flipping Integral]:
\displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Splitting Integral]:
\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^8_2 {g(x)} \, dx = 13


\displaystyle \int\limits^8_6 {g(x)} \, dx = -3


\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx

Step 2: Integrate

  1. [Integral] Rewrite [Integration Property - Flipping Integral]:
    \displaystyle \int\limits^8_6 {g(x)} \, dx = -3 \rightarrow \int\limits^6_8 {g(x)} \, dx = 3
  2. [Integral] Rewrite [Integration Property - Splitting Integral]:
    \displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 2 + \int\limits^8_2 {g(x)} \, dx + \int\limits^6_8 {g(x)} \, dx
  3. [Integrals] Substitute:
    \displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 2 + 13 + 3
  4. Simplify:
    \displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 18

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User SRR
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories