Answer:

General Formulas and Concepts:
Calculus
Integration
Integration Property [Flipping Integral]:

Integration Property [Splitting Integral]:

Explanation:
Step 1: Define
Identify



Step 2: Integrate
- [Integral] Rewrite [Integration Property - Flipping Integral]:

- [Integral] Rewrite [Integration Property - Splitting Integral]:

- [Integrals] Substitute:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration