206k views
0 votes
Find


\lim_(h \to \0) ( f(4+h)-f(4))/(h) if f(x) = absolute value of (4x-1)

Cheers! :)

User Shivshnkr
by
7.8k points

1 Answer

0 votes
By definition of the absolute value, you have


|4x-1|=\begin{cases}4x-1&amp;\text{for }x\ge\frac14\\1-4x&amp;\text{for }x<\frac14\end{cases}

For small
h, you have
4+h\approx4, so you would write
|4x-1|=4x-1. The limit is then


\displaystyle\lim_(h\to0)\frac{f(4+h)-f(4)}h=\lim_(h\to0)\frac{(4(4+h)-1)-(4(4)-1)}h=\lim_(h\to0)\frac{4h}h=\lim_(h\to0)4=4
User PomPom
by
6.1k points