67.0k views
5 votes
 The difference between the roots of the equation 3x^2+bx+10=0 is equal to 4 1/3 . Find b.

User Orazio
by
7.3k points

1 Answer

5 votes

\textit{quadratic formula}\\ {{ 3}}x^2{{ +b}}x{{ +10}}=0 \qquad \qquad x= \cfrac{ - {{ b}} \pm \sqrt { {{ b}}^2 -4{{ a}}{{ c}}}}{2{{ a}}} \\ \quad \\ meaning\implies x=\cfrac{-b\pm√(b^2-4(3)(10))}{2(3)}\qquad now \\ \quad \\ \cfrac{-b\pm√(b^2-4(3)(10))}{2(3)}\to \begin{cases} \cfrac{-b+√(b^2-4(3)(10))}{2(3)} \\ \quad \\ \cfrac{-b-√(b^2-4(3)(10))}{2(3)} \end{cases}\impliedby \textit{two roots}


\textit{and their root difference is }4(1)/(3)\implies \cfrac{13}{3}\qquad so \\ \quad \\ \left[ \cfrac{-b+√(b^2-4(3)(10))}{2(3)} \right]-\left[ \cfrac{-b-√(b^2-4(3)(10))}{2(3)} \right]=\cfrac{13}{3} \\ \quad \\ \left[ \cfrac{-b+√(b^2-4(3)(10))}{6} \right]+\left[ \cfrac{+b+√(b^2-4(3)(10))}{6} \right]=\cfrac{13}{3} \\ \quad \\ \cfrac{-b+√(b^2-4(3)(10))+b+√(b^2-4(3)(10))}{6}=\cfrac{13}{3} \\ \quad \\ \cfrac{2√(b^2-4(3)(10))}{6}=\cfrac{13}{3}

and I'm pretty sure you can take it from there

User Khurram Ishaque
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.