124k views
3 votes
(sinx + icosx)^n = cos( nπ\2 - nx) + isin( nπ\2 - nx)

User Bhuvnesh
by
8.1k points

1 Answer

2 votes

\sin x+i\cos x=i(\cos x-i\sin x)=ie^(-ix)=e^(i\frac\pi2)e^(-ix)=e^(i\left(\frac\pi2-x\right))

By DeMoivre's theorem,


(\cos y+i\sin y)^n=(e^(iy))^n=e^(iny)=\cos(ny)+i\sin(ny)

which would here mean that


(\sin x+i\cos x)^n=\left(e^(i\left(\frac\pi2-x\right))\right)^n=e^{i\left(\frac{n\pi}2-nx\right)}=\cos\left(\frac{n\pi}2-nx\right)+i\sin\left(\frac{n\pi}2-nx\right)

as required.
User Raddrick
by
8.7k points