502,509 views
24 votes
24 votes
Please answer this question​

Please answer this question​-example-1
User James Manning
by
3.2k points

2 Answers

16 votes
16 votes

Given that,

→ ((14² - 13²)^⅔)/((15² - 12²)^¼)

Evaluating the problem,

→ ((14² - 13²)^⅔)/((15² - 12²)^¼)

→ ((196 - 169)^⅔)/((225 - 144)^¼)

→ (27^⅔)/(81^¼)

→ ((3³)^⅔)/((3⁴)^¼)

→ (3²)/3

→ 9/3 = 3

Therefore, the solution is 3.

User Cmrussell
by
2.6k points
23 votes
23 votes

Answer:

3

Explanation:

Given expression:


\frac{(14^2-13^2)^{(2)/(3)}}{(15^2-12^2)^{(1)/(4)}}

Following the order of operations, carry out the operations inside the parentheses first.

Apply the Difference of Two Square formula
x^2-y^2=\left(x+y\right)\left(x-y\right)

to the operations inside the parentheses in both the numerator and denominator:


\implies \frac{((14+13)(14-13))^{(2)/(3)}}{((15+12)(15-12))^{(1)/(4)}}

Carry out the operations inside the parentheses:


\implies \frac{((27)(1))^{(2)/(3)}}{((27)(3))^{(1)/(4)}}


\implies \frac{(27)^{(2)/(3)}}{(81)^{(1)/(4)}}

Carry out the prime factorization of 27 and 81.

Therefore, rewrite 27 as 3³ and 81 as 3⁴:


\implies \frac{(3^3)^{(2)/(3)}}{(3^4)^{(1)/(4)}}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies \frac{3^{(3 \cdot (2)/(3))}}{3^{(4 \cdot (1)/(4))}}


\implies (3^2)/(3^1)


\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c):


\implies 3^((2-1))


\implies 3^1


\implies 3

User Dertkw
by
2.9k points