94.2k views
0 votes
Limn→∞∑i=1nxicos(xi)Δx,[0,2π]

1 Answer

1 vote
However the
x_i are chosen, the sum is equivalent to the definite integral,


\displaystyle\lim_(n\to\infty)\sum_(i=1)^n x_i\cos x_i\Delta x=\int_0^(2\pi)x\cos x\,\mathrm dx

which can be computed via integration by parts. If
u=x and
\mathrm dv=\cos x\,\mathrm dx, you have


\displaystyle\int_0^(2\pi)x\cos x\,\mathrm dx=[uv]_0^(2\pi)-\int_0^(2\pi)v\,\mathrm du

or equivalently,


\displaystyle\int_0^(2\pi)x\cos x\,\mathrm dx=[x\sin x]_0^(2\pi)-\int_0^(2\pi)\sin x\,\mathrm dx=[\cos x]_0^(2\pi)=0
User Zenocon
by
8.4k points