143k views
3 votes
How to solve this integration problem? the answer should be -π/12

How to solve this integration problem? the answer should be -π/12-example-1
User Cxphong
by
7.2k points

1 Answer

4 votes

\displaystyle\int_(-1)^(-\sqrt2/2)(\mathrm dy)/(y√(4y^2-1))

Try setting
y=\frac12\sec t, so that
\mathrm dy=\frac12\sec t\tan t\,\mathrm dt. The interval then changes from
-1\le y\le-\frac{\sqrt2}2 to
\frac{2\pi}3\le t\le \frac{3\pi}4.

Now, the integral is


\displaystyle \int_(2\pi/3)^(3\pi/4) (\frac12\sec t\tan t)/(\frac12\sec t√(4\left(\frac12\sec t\right)^2-1))\,\mathrm dt=\int_(2\pi/3)^(3\pi/4)(\tan t)/(√(\sec^2t-1))\,\mathrm dt

The Pythagorean identity lets you reduce the denominator:


√(\sec^2t-1)=√(\tan^2t)=|\tan t|

Since
\tan t<0 for the given interval, you have
|\tan t|=-\tan t, which means the integral is equal to


\displaystyle\int_(2\pi/3)^(3\pi/4)(\tan t)/(-\tan t)\,\mathrm dt=-\int_(2\pi/3)^(3\pi/4)\mathrm dt=-\frac\pi{12}
User Ze
by
8.4k points

No related questions found