218k views
3 votes
Which expression is equivalent to (x^4/3 x^2/3)^1/3

O x^2/3
O x^2/9
O
x^8/27
O x^7/3

User Temuraru
by
3.2k points

1 Answer

9 votes

Answer:

We conclude that:


\left(\:\:(x^4)/((3x^2)/(3))\right)^{(1)/(3)}\:=\:x^{(2)/(3)}

Hence, option A i.e.
x^{(2)/(3)} is true.

Explanation:

Given the expression


\left(\:\:(x^4)/((3x^2)/(3))\right)^{(1)/(3)}

Apply exponent rule:
\left((a)/(b)\right)^c=(a^c)/(b^c)


\left((x^4)/((3x^2)/(3))\right)^{(1)/(3)}=\frac{\left(x^4\right)^{(1)/(3)}}{\left((3x^2)/(3)\right)^{(1)/(3)}}


=\frac{x^{(4)/(3)}}{\left((3x^2)/(3)\right)^{(1)/(3)}}
\:\:\:\left(x^4\right)^{(1)/(3)}=x^{(4)/(3)}


=\frac{x^{(4)/(3)}}{\frac{\left(3x^2\right)^{(1)/(3)}}{3^{(1)/(3)}}}


=\frac{x^{(4)/(3)}}{x^{(2)/(3)}}

Apply exponent rule:
(x^a)/(x^b)=x^(a-b)


=x^{(4)/(3)-(2)/(3)}


=x^{(2)/(3)}\\

Therefore, we conclude that:


\left(\:\:(x^4)/((3x^2)/(3))\right)^{(1)/(3)}\:=\:x^{(2)/(3)}

Hence, option A i.e.
x^{(2)/(3)} is true.

User Adam Mitz
by
3.4k points