31.1k views
3 votes
Sin^6x+cos^6x+3/4sin²2x=1

User Select
by
6.4k points

1 Answer

1 vote

\sin^2x=\frac{1-\cos2x}2

\cos^2x=\frac{1+\cos2x}2

Using these identities, you can rewrite the equation as


\left(\frac{1-\cos2x}2\right)^3+\left(\frac{1+\cos2x}2\right)^3+\frac34\sin^22x=1

\frac{1-3\cos2x+3\cos^22x-\cos^32x}8+\frac{1+3\cos2x+3\cos^22x+\cos^32x}8+\frac34\sin^22x=1

\frac{1+3\cos^22x}4+\frac34\sin^22x=1

1+3\cos^22x+3\sin^22x=4

3\cos^22x+3\sin^22x=3

\cos^22x+\sin^22x=1

which is true for all
x (infinitely many solutions).
User Joshua Hunter
by
5.8k points