187k views
0 votes
Indefinite integral of sec 2x + tan2x dx

User MoLow
by
8.8k points

1 Answer

7 votes
Assuming you mean
\sec2x+\tan2x, you have


\displaystyle\int(\sec2x+\tan2x)\,\mathrm dx=\int\sec2x(\sec2x+\tan2x)/(\sec2x+\tan2x)\,\mathrm dx+\int(\sin2x)/(\cos2x)\,\mathrm dx

\displaystyle=\int(\sec^22x+\sec2x\tan2x)/(\sec2x+\tan2x)\,\mathrm dx+\int(\sin2x)/(\cos2x)\,\mathrm dx

For the first integral, set
u=\sec2x+\tan2x, so that
\mathrm du=2(\sec2x\tan2x+\sec^22x)\,\mathrm dx; for the second,
v=\cos2x, so that
\mathrm dv=-2\sin2x\,\mathrm dx. Then you have


\displaystyle\frac12\int\frac{\mathrm du}u-\frac12\int\frac{\mathrm dv}v

\displaystyle=\frac12(\ln|u|-\ln|v|)+C

\displaystyle=\ln\left|\frac uv\right|^(1/2)+C

\displaystyle=\ln\left|(\sec2x+\tan2x)/(\cos2x)\right|^(1/2)+C

\displaystyle=\ln\left|\sec^22x(1+\sin2x)\right|^(1/2)+C
User Mark Rammmy
by
8.4k points