32.2k views
5 votes
What is the area of the triangle whose vertices are X(−5, −1)) , Y(−5, −10)) , and Z(−9, −7) ?

____Units sqared

2 Answers

4 votes
XY = −1−(−10) = 9
(line x = −5) = −5−(−9) = 4

Area = 1/2 * 9 * 4 = 18
User Paldepind
by
6.0k points
5 votes

Answer:

17.96 units squared

Explanation:

Refer the attached figure .

Point X = (−5, −1)

Point Y=(−5, −10)

Point Z=(−9, −7)

In ΔXYZ , to find the length of sides we will use distance formula.


d=√((x_2-x_1)^2+(y_2-y_1)^2)

Length of XY

Point X =
(x_1,y_1)=(-5,-1)

Point Y=
(x_2,y_2)=(-5,-10)


XY=√((-5-(-5))^2+(-10-(-1))^2)


XY=√((0)^2+(-9)^2)


XY=√(81)


XY=9

Length of YZ

Point Y=
(x_1,y_1)=(-5,-10)

Point Z =
(x_2,y_2)=(-9,-7)


YZ=√((-9-(-5))^2+(-7-(-10))^2)


XY=√((-4)^2+(3)^2)


YZ=√((-4)^2+(3)^2)


YZ=√(16+9)


YZ=√(25)


YZ=5

Length of XZ

Point X =
(x_1,y_1)=(-5,-1)

Point Z =
(x_2,y_2)=(-9,-7)


XZ=√((-9-(-5))^2+(-7-(-1))^2)


XZ=√((-4)^2+(-6)^2)


XZ=√(16+36)


XZ=√(52)


XZ=7.2

So, to find the area of triangle we will use heron's formula .


Area =√(s(s-a)(s-b)(s-c))

Where
s=(a+b+c)/(2)

a,b,c are sides of triangle

a=9

b=5

c=7.2


s=(9+5+7.2)/(2)


s=10.6


Area =√(10.6(10.6-9-a)(10.6-5)(10.6-7.2))


Area =√(322.9184)


Area =17.96

Hence the area of triangle is 17.96 units squared

What is the area of the triangle whose vertices are X(−5, −1)) , Y(−5, −10)) , and-example-1
User Arjun Nayak
by
6.8k points