88.4k views
14 votes
: Discuss the continuity of the function f(x)=xtanh(1/x) at x = 0 given that x≠0 and f(0)=0.

User CuongHuyTo
by
4.2k points

1 Answer

5 votes

Answer:

Explanation:

Given that:


f(x) = x tan ( (1)/(x))

For continuity;
\lim \limits_(x \to 0^-) f(x) = \lim \limits_(x \to 0^+) f(x) = f(0)

Now;


\lim \limits_(x \to 0^-) f(x) = \lim \limits_(x \to 0^-) xtan ((1)/(x))


= \lim \limits_(x \to 0^-) (tan ((1)/(x)))/((1)/(x))


= \lim \limits_(x \to 0^-) (tan ((1)/(0)))/((1)/(0))


= (\infty)/(\infty) \to intermediate \ form

Using L'Hospital Rule


\lim \limits _(x \to 0^-) [ x \ tan ((1)/(x))] = \lim \limits _(x \to 0^-) ((d)/(dx) \ tan (1)/(x) )/((d)/(dx) (1)/(x) )


= \lim \limits _(x \to 0^-) (sec^(1) ((1)/(x)) * (-1)/(x^2) )/((-1)/(x^2) )


= \lim \limits _(x \to 0^-) sec^(1) ((1)/(x))


= sec^1((1)/(0))


=sec^1 (\infty) \to not defined


\lim \limits _(x \to 0^- )[x \ tan ((1)/(x))] \\e 0 = f(0)

Hence, f(x) is not continuous.

User Bhargav Thanki
by
4.1k points