230k views
5 votes
Differentiate.

y = log₅(2x³-1)

User Uga Buga
by
8.8k points

2 Answers

3 votes
change the base to ln

remmber

log_a(b)= (log_c(b))/(log_c(a))
ln is just base e

so

log_5(2x^3-1)= (log_e(2x^3-1))/(log_e(5)) = (ln(2x^3-1)))/(ln(5))

remember that tthe deritivive of
(f(x))/(g(x)) is
(f'(x)g(x)-g'(x)f(x))/(g(x)^2)
so

let's take the deritivies seperately first
deritivive of ln(2x^3-1) is
(6x^2)/(2x^3-1)
deritivive of ln(5) is 0



(ln(2x^3-1)))/(ln(5)) = (( (6x^2)/(2x^3-1))(ln(5))-(0)(ln(2x^3-1)))/((ln(5))^2)=
(( (6x^2)/(2x^3-1))(ln(5)))/((ln(5))^2)=
( (6x^2)/(2x^3-1))/(ln(5))= (6x^2)/((2x^3-1)(ln(5)))


User Elti Musa
by
7.0k points
4 votes
(1/(ln 5))((6x^2)/(2x^3-1))

User Daniel Gaeta
by
8.7k points