228k views
23 votes
If x² + 9y² = 26 and x × y = 4, what is the value of (x - 3y)² ??​

1 Answer

12 votes


\qquad \quad \large {\pmb{ \frak { \mid {\overline{ \underline{\purple{ \bigstar \: Required \: Answer \: \bigstar}}}}}} \mid}\\


\qquad To find the value of (x - 3y) ², the binomial formula squared is: (a - b)² = a² - 2ab + b²

  • If we apply binomial squared with our binomial, we get:


\qquad
\purple{\twoheadrightarrow\pmb{(x-3y)^2= x^2 - \underbrace{2(x)(3y)}_(6xy) +9 y^2}}

  • Now, if we try to unite the corresponding terms with each one or simply call simplify, we get:


\qquad
\purple{\twoheadrightarrow\sf { - 6xy+ x^2+ 9y^2}}

  • Again, with the data included in the problem, we can get a numerical expression:


\qquad
\purple{\twoheadrightarrow\sf { - 6(4)+ 26}}


\qquad
\purple{\twoheadrightarrow\sf{ -24 + 26}}

  • Doing our subtraction we get that the value of the expression is equal to:


\qquad
\purple{\twoheadrightarrow\pmb 2}

  • Henceforth, The result of this expression is 2.

____________________________________

User Joeforker
by
4.9k points