The tangent vector is by definition the derivative of r(t) with respect to t:
T' = dr/dt = <6t, tsin(t), tcos(t)>
The unit vector T = T'/|T'| = <6t, tsin(t), tcos(t)>/sqrt(36t^2 + t^tsin(t)^2 +t^2cos(t^2))
T = <6t, tsin(t), tcos(t)>/(t*sqrt(37)) = <6, sin(t), cos(t)>/sqrt(37)
Now the normal unit vector N is perpendicular to r/|r| and T. It is the second derivative of r/|r| with repsect to time
N' = d^2r/dt^2 = <6, sin(t) + tcos(t), cos(t) - tsin(t)>
N= N'/|N'| = <6, sin(t) + tcos(t), cos(t) - tsin(t)>/sqrt(36 + sin^2t +2tsin(t)cos(t)+t^2cos^2t + cos^2(t) -2tcos(t) sin(t) +t^2sin^2t)
N = <6, sin(t) + tcos(t), cos(t) - tsin(t)>/sqrt(37 +t^2)