170k views
15 votes
Classify ABC by its sides. Then determine whether it is a right triangle.

A(3, 3), B (6, 9), C (
6,-3)

1 Answer

7 votes

Answer:

∴Given Δ ABC is not a right-angle triangle

a= AB = √45 = 3√5

b = BC = 12

c = AC = √45 = 3√5

Explanation:

Given vertices are A(3,3) and B(6,9)


AB = \sqrt{x_(2)-x_(1) )^(2) +(y_(2)-y_(1) )^(2) }

AB =
\sqrt{(9-3)^(2)+(6-3)^(2) } = \sqrt{6^(2)+3^(2) } =√(45)

Given vertices are B(6,9) and C( 6,-3)


B C = \sqrt{x_(2)-x_(1) )^(2) +(y_(2)-y_(1) )^(2) }

=
\sqrt{(-3-9)^(2)+(6-6)^(2) } =\sqrt{12^(2) } = 12

BC = 12

Given vertices are A(3,3) and C( 6,-3)


AC = \sqrt{(6-3)^(2)+(-3-3)^(2) } = √(9+36) = √(45)

AC² = AB²+BC²

45 = 45+144

45 ≠ 189

∴Given Δ ABC is not a right angle triangle

User Zulaxia
by
3.9k points