87.9k views
3 votes
How to do question 27

How to do question 27-example-1
User Talnicolas
by
8.6k points

1 Answer

1 vote
1/(sin(90 + θ)cos(360 - θ)) - tan²(-θ)

Note:

sin(90 + θ) = cosθ Cosine and Sine are complementary.

cos(360 - θ) = cosθ Cosine positive in 4th quadrant.

tan(-θ) = -tanθ Negative angle concept.


1/(sin(90 + θ)cos(360 - θ)) - tan²(-θ) = 1/(cosθcosθ) - (-tanθ)²

= 1/(cos²θ) - tan²θ

= (1/cosθ)² - tan²θ
Note: 1/cosθ = secθ

= (secθ)² - tan²θ

= sec²θ - tan²θ

= 1


Note that 1+ tan²θ = sec²θ is a Trigonometric identity.

That means: sec²θ - tan²θ = 1

Hope this explains it.
User AreusAstarte
by
8.6k points

No related questions found