113k views
2 votes
Find the derivative of f(x)=2arcsin(x-1)

2 Answers

2 votes

Since
(\mathrm d)/(\mathrm dx)\arcsin x=\frac1{√(1-x^2)}, you have


\displaystyle(\mathrm d)/(\mathrm dx)2\arcsin(x-1)=2(\mathrm d)/(\mathrm dx)\arcsin(x-1)=2((\mathrm d)/(\mathrm dx)(x-1))/(√(1-(x-1)^2))=\frac2{√(2x-x^2)}

User Achraf JEDAY
by
8.6k points
0 votes

Answer:


\displaystyle f'(x) = (2)/(√(1 - (x - 1)^2))

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = 2 \arcsin (x - 1)

Step 2: Differentiate

  1. Derivative Property [Multiplied Constant]:
    \displaystyle f'(x) = 2 (d)/(dx)[\arcsin (x - 1)]
  2. Trigonometric Differentiation [Derivative Rule - Chain Rule]:
    \displaystyle f'(x) = 2 \bigg( ((x - 1)')/(√(1 - (x - 1)^2)) \bigg)
  3. Basic Power Rule [Derivative Properties]:
    \displaystyle f'(x) = 2 \bigg( (1)/(√(1 - (x - 1)^2)) \bigg)
  4. Simplify:
    \displaystyle f'(x) = (2)/(√(1 - (x - 1)^2))

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Yitsushi
by
8.3k points