Answer:
ye^(2x) - 3e^(2x) = C or (y - 3)e^(2x) = C
Explanation:
dy/dx + 2y = 6
This is a first order linear ODE.
p(x) = 2
Integrating factor: I(x) = e^(∫ 2 dx) = e^(2x)
e^(2x)(dy/dx + 2y) = 6e^(2x)
e^(2x) dy + 2ye^(2x) dx = 6e^(2x) dx
Integrate both sides of the equation.
ye^(2x) = 3e^(2x) + C
Thus, the general solution is ye^(2x) - 3e^(2x) = C or (y - 3)e^(2x) = C.