Answer:
The distance between AC is 15 units.
Explanation:
Here's the required formula to find distance between points A(2, 10) and C(14, 1) :
![{\implies{\small{\pmb{\sf{Distance = \sqrt{\Big(x_(2) - x_(1) \Big)^(2) + \Big(y_(2) - y_(1) \Big)^(2)}}}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e9nw7ie4m5091exwd43d0rvt5y4ox3fdq4.png)
As per given question we have provided that :
![\begin{gathered}\begin{gathered} \footnotesize\rm {\underline{\underline{Where}}}\begin{cases}& \sf x_2 = 14\\ & \sf x_1 = 2\\ & \sf y_2 = 1\\& \sf y_1 = 10\end{cases} \end{gathered}\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vr1bsnadq99qet0izeci2rheoh543ci4u6.png)
Substituting all the given values in the formula to find the distance between points A(2, 10) and C(14, 1) :
![\begin{gathered} \quad{\implies{\small{\sf{AC = \sqrt{\Big(x_(2) - x_(1) \Big)^(2) + \Big(y_(2) - y_(1) \Big)^(2)}}}}}\\\\\quad{\implies{\small{\sf{AC = \sqrt{\Big(14 - 2\Big)^(2) + \Big(1 - 10\Big)^(2)}}}}}\\\\\quad{\implies{\small{\sf{AC = \sqrt{\Big(\: 12 \:\Big)^(2) + \Big( - 9\Big)^(2)}}}}}\\\\ \quad{\implies{\small{\sf{AC = √(\Big(12 * 12\Big)+ \Big( - 9 * - 9\Big))}}}}\\\\\quad{\implies{\small{\sf{AC = √(\Big( \: 144 \: \Big)+ \Big( \: 81 \: \Big))}}}}\\\\ \quad{\implies{\small{\sf{AC = √(\Big(144 + 81\Big))}}}}\\\\\quad{\implies{\small{\sf{AC = √(\Big(225\Big))}}}}\\\\\quad{\implies{\small{\sf{\underline{\underline{\red{AC = 15}}}}}}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pnonoy8aqx9sh3n4paouv45ldc3asd68bd.png)
Hence, the distance between AC is 15 units.
![\rule{300}{2.5}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4wr5wvuxv3n1yp1b1sykhxf527peu2ltxm.png)