97.9k views
0 votes
Rewrite the radicand as two factors, one of which is a perfect cube.

3/250

1 Answer

3 votes

\bf ~~~~~~~~~~~~\textit{negative exponents} \\\\ a^(-n) \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^(-n) \qquad \qquad a^n\implies \cfrac{1}{a^(-n)} \\\\ -------------------------------\\\\ \cfrac{3}{250}\qquad \begin{cases} 250=2\cdot 5\cdot 5\cdot 5\\ \qquad 2\cdot 5^3 \end{cases}\implies \cfrac{3}{5^3\cdot 2}\implies \cfrac{1}{5^3}\cdot \cfrac{3}{2} \\\\\\ 5^(-3)\cdot \cfrac{3}{2}\implies (5^(-1))^3\cdot \cfrac{3}{2}
User Saurabh Agrawal
by
8.0k points