Correct Answer:
z1= 2(cos 56 deg + i sin 56 deg)
z2= 2(cos 128 deg + i sin 128 deg)
z3 = 2(cos 200 deg + i sin 200 deg)
z4 = 2(cos 272 deg+ i sin 272 deg)
z5 = 2(cos 344 deg+ i sin 344 deg)
Explanation:
De Moivre's Theorem--> e^i theta = cos theta + i sin theta
The fifth root of 32 is 2 and 280/5 is 56
z1= 2(cos 56 deg + i sin 56 deg)
360deg/ 5 = 72 deg
(If it was asking for cubed root u would do 360/3. whatever the root is you divide that by 360)
z2= 2(cos 56 + 72) + (i sin 56 + 72)
z2= 2(cos 128 deg + i sin 128 deg)
z3 = 2(cos 128 + 72) + ( i sin 128 + 72)
z3 = 2(cos 200 deg + i sin 200 deg)
z4 = 2(cos 200 + 72) + (i sin 200 + 72)
z4 = 2(cos 272 deg + i sin 272 deg)
z5 = 2(cos 272 + 72) + (i sin 272 + 72)
z5 = 2(cos 344 deg + i sin 344 deg)
deg means degrees