68.6k views
0 votes
Differentiate y=x^√x

1 Answer

4 votes
Rewrite the right hand side in terms of exponentials and logarithms, using the fact that


a=e^(\ln a)=\exp(\ln a)


y=x^(\sqrt x)=\exp\left(\ln x^(\sqrt x)\right)=\exp\left(\sqrt x\ln x\right)

Now differentiate both sides, applying the chain and product rules.


(\mathrm dy)/(\mathrm dx)=(\mathrm d)/(\mathrm dx)\exp\left(\sqrt x\ln x\right)


(\mathrm dy)/(\mathrm dx)=\exp\left(\sqrt x\ln x\right)\cdot(\mathrm d)/(\mathrm dx)\left(\sqrt x\ln x\right)


(\mathrm dy)/(\mathrm dx)=x^(\sqrt x)\left((\mathrm d)/(\mathrm dx)[\sqrt x]\ln x+\sqrt x(\mathrm d)/(\mathrm dx)[\ln x]\right)


(\mathrm dy)/(\mathrm dx)=x^(\sqrt x)\left((\ln x)/(2\sqrt x)+\frac{\sqrt x}x\right)


(\mathrm dy)/(\mathrm dx)=\frac12x^(\sqrt x)\left(x^(-1/2)\ln x+2x^(-1/2)\right)


(\mathrm dy)/(\mathrm dx)=\frac12x^(\sqrt x-1/2)\left(\ln x+2\right)
User Sam Williams
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories