98.9k views
1 vote
G technical mathematics with calculus volume 10 find the derivative of the function y = sqrt(x^2+1) using limits definition

User Dougp
by
7.8k points

1 Answer

7 votes
By definition of the derivative,


\displaystyle(\mathrm dy)/(\mathrm dx)=\lim_(h\to0)\frac{y(x+h)-y(x)}h


\displaystyle(\mathrm dy)/(\mathrm dx)=\lim_(h\to0)\frac{√((x+h)^2+1)-√(x^2+1)}h=\lim_(h\to0)\frac{√(x^2+2xh+h^2+1)-√(x^2+1)}h

Multiply the numerator and denominator by the conjugate of the numerator:


\frac{√(x^2+2xh+h^2+1)-√(x^2+1)}h\cdot(√(x^2+2xh+h^2+1)+√(x^2+1))/(√(x^2+2xh+h^2+1)+√(x^2+1))=((x^2+2xh+h^2+1)-(x^2+1))/(h\left(√(x^2+2xh+h^2+1)+√(x^2+1)\right))

Now


\displaystyle(\mathrm dy)/(\mathrm dx)=\lim_(h\to0)((x^2+2xh+h^2+1)-(x^2+1))/(h\left(√(x^2+2xh+h^2+1)+√(x^2+1)\right))

=\displaystyle\lim_(h\to0)(2xh+h^2)/(h\left(√(x^2+2xh+h^2+1)+√(x^2+1)\right))

=\displaystyle\lim_(h\to0)(2x+h)/(√(x^2+2xh+h^2+1)+√(x^2+1))

As
h\to0, in the numerator we have
2x+h\to2x; in the denominator we have
√(x^2+2xh+h^2+1)\to√(x^2+1). So the limit is


(2x)/(2√(x^2+1))=\frac x{√(x^2+1)}
User Isaac Bennetch
by
8.4k points