177k views
4 votes
Write 2018 to the power of 2019 + 2018 as the sum of two perfect squares

User Idm
by
8.0k points

2 Answers

7 votes

Answer: I, III, and IV only

Explanation:

User Patrick C
by
8.8k points
3 votes

2018^(2019) + 2018=2018( 2018^(2018) +1)=( 13^(2)+ 43^(2))(( 2018^(1009))^(2) + 1^(2))
According to Brahmagupta-Fibonnaci identity

( a^(2) + b^(2)) (c^(2)+ d^(2)) = (ac+bd)^(2) + (ad-bc )^(2)
Then, we can write that

(13^(2)+ 43^(2))(( 2018^(1009))^(2) + 1^(2))

[(13*2008^(1009)+43)^(2) +(13-2008^(1009)*43)^(2)]
Q.E.D
User Dotdotcommadot
by
8.2k points