99.6k views
3 votes
120e^(2x)=75e^(3x)
Please solve with steps

1 Answer

0 votes
Step 1. Take natural logarithm to both sides of the equation:

120e^(2x)=75e^(3x)

ln(120e^(2x))=ln(75e^(3x))

Step 2. Apply product rule of logarithms
ln(ab)=ln(a)+ln(b):

ln(120)+ln(e^(2x))=ln(75)+ln(e^(3x))

Step 3. Apply the rule
ln(e^x)=x:

ln(120)+2x=ln(75)+3x

Step 4. Solve for
x:

ln(120)+2x=ln(75)+3x

ln(120)-ln(75)=3x-2x

x=ln(120)-ln(75)
Apply the quotient rule of logarithms
ln(a)-ln(b)= ln((a)/(b) ):

x=ln( (120)/(75) )

x=ln( (8)/(5) )

We can conclude that the solution of our equation is
x=ln( (8)/(5) ), which is approximately
x=0.47.

User Zevi
by
8.7k points

Related questions