70.4k views
1 vote
Solve the system using substitution method
3x+y=6
2x-4y=10

User RWGodfrey
by
8.4k points

2 Answers

2 votes

\begin{cases}&3x + y = 6 \\&2x - 4y = 10\end{cases}

Multiply 4 to the first equation:

\begin{cases}&12x + 4y = 24 \\&2x - 4y = 10\end{cases}

ADD Equation 1 to Equation 2 and find x:

\begin{aligned}&14x =34 \\&x= 34/14 \\& x = 17/7\end{aligned}

Substitute x = 17/7 and find y:

\begin{aligned}&3x + y = 6 \\&3 (17/7) + y = 6 \\& 51/7 + y = 6 \\&y = -9/7\end{aligned}

Answer: x = 17/7, y = -9/7
User Boindiil
by
8.5k points
4 votes

\left\{\begin{array}{ccc}3x+y=6&|-3x\\2x-4y=10\end{array}\right\\\\\left\{\begin{array}{ccc}y=6-3x\\2x-4y=10\end{array}\right\\\\substitute\ y=6-3x\ to\ the\ second\ equation\\\\2x-4(6-3x)=10\\\\2x-4\cdot6-4\cdot(-3x)=10\\\\2x-24+12x=10\\\\14x-24=10\ \ \ |+24\\\\14x=34\ \ \ \ |:14\\\\x=(34)/(14)\to x=(17)/(7)\\\\substitute\ the\ value\ of\ x\ to\ first\ equation\\\\y=6-3\cdot(17)/(7)=6-(51)/(7)=(42)/(7)-(51)/(7)=-(9)/(7)


\boxed{\left\{\begin{array}{ccc}x=(17)/(7)\\\\y=-(9)/(7)\end{array}\right}
User Falon
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories