100.0k views
2 votes
This is the attached diagram to 5

This is the attached diagram to 5-example-1

1 Answer

2 votes
The problem statement tells you ∠MLK is 61°, so ∠LMK = 180° -68° -61° = 51°. Since a tangent is always perpendicular to a radius, triangles LJM and LJK are right triangles.

Trigonometry tells you ...
tangent = opposite / adjacent
so you can write two relations involving LJ.
tan(51°) = LJ/JM
tan(68°) = LJ/JK
The second equation can be used to write an expression for LJ that can be substituted into the first equation.
LJ = JK*tan(68°) = 3*tan(68°)
Substituting, we have
tan(51°) = 3*tan(68°)/JM
Multiplying by JM/tan(51°), we get
JM = 3*tan(68°)/tan(51°)
JM ≈ 6.01

The radius of circle M is about 6.01.
This is the attached diagram to 5-example-1
This is the attached diagram to 5-example-2
User Mmond
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories