164k views
2 votes
A group of 15 students play different instruments, 6 play piano, 4 play violin and 5 play guitar. A student is chosen at random. What is the probability that the student chosen plays violin or piano?

User Danielkza
by
7.8k points

2 Answers

6 votes
6/15+4/15=10/15 = 2/3
User Jacqijvv
by
8.0k points
3 votes

Total number of students playing piano, violin and guitar = 15

Given: 6 students play piano, 4 play violin and 5 play guitar.

Probability of student chosen playing piano =

P(P)=
(6)/(15)

=
(2)/(5)

Probability of student chosen playing violin =

P(V)=
(4)/(15)

=
(4)/(15)

Now, we have to find the probability that the student chosen plays violin or piano.

using the formula,


P(V\cup P)=P(V)+P(P)-P(V\cap P)

Since there is no student chosen who plays violin and piano both, therefore
P(V\cap P)=0.

Now,


P(V\cup P)=P(V)+P(P)-P(V\cap P)


P(V\cup P)=(4)/(15)+(2)/(5)-0


P(V\cup P)=(4)/(15)+(2)/(5)


P(V\cup P)=(4+6)/(15)


P(V\cup P)=(10)/(15)


P(V\cup P)= 0.666

= 0.67

Therefore, the probability that the student chosen plays violin or piano is 0.67.

User Ximmyxiao
by
7.9k points