196k views
1 vote
Help please. show work

Help please. show work-example-1
User Codymanix
by
8.5k points

1 Answer

4 votes
sine law to find angle R


\displaystyle (\sin R)/(122)= (\sin 64)/(187.5) \\ \\ \sin R = (122\sin 64)/(187.5) \\ \\ R = \sin^(-1) \left[ (122\sin 64)/(187.5) \right] \\ \\ R \approx 35.7899447211

All angles in triangle add to 180 so we can find angle P

P = 180 - R - Q
P = 180 - 35.7899447211 - 64
P = 80.2100552789

sine law with angle P to find length of RQ


\displaystyle (RQ)/(\sin P) = (187.5)/(\sin 64) \\ \\ RQ = (187.5\sin P)/(\sin 64) \\ \\ RQ = (187.5\sin 80.2100552789)/(\sin 64) \\ \\ RQ = 205.57

or use cosine law


RQ = √(187.5^2 + 122^2 - 2(187.5)(122) \cos80.2100552789) \\ RQ \approx 205.57

either way the answer is 205.57 feet
User Sjoerd Visscher
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.