196k views
1 vote
Help please. show work

Help please. show work-example-1
User Codymanix
by
8.5k points

1 Answer

4 votes
sine law to find angle R


\displaystyle (\sin R)/(122)= (\sin 64)/(187.5) \\ \\ \sin R = (122\sin 64)/(187.5) \\ \\ R = \sin^(-1) \left[ (122\sin 64)/(187.5) \right] \\ \\ R \approx 35.7899447211

All angles in triangle add to 180 so we can find angle P

P = 180 - R - Q
P = 180 - 35.7899447211 - 64
P = 80.2100552789

sine law with angle P to find length of RQ


\displaystyle (RQ)/(\sin P) = (187.5)/(\sin 64) \\ \\ RQ = (187.5\sin P)/(\sin 64) \\ \\ RQ = (187.5\sin 80.2100552789)/(\sin 64) \\ \\ RQ = 205.57

or use cosine law


RQ = √(187.5^2 + 122^2 - 2(187.5)(122) \cos80.2100552789) \\ RQ \approx 205.57

either way the answer is 205.57 feet
User Sjoerd Visscher
by
8.5k points

No related questions found