225k views
1 vote
The area of the smaller triangle is about 270 ft2. Which is the best approximation for the area of the larger triangle?

The area of the smaller triangle is about 270 ft2. Which is the best approximation-example-1

1 Answer

4 votes
the assumption here is that, both triangles are similar. Now, if that's the case,


\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\ -----------------------------


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ \cfrac{small}{large}\qquad \cfrac{25}{35}\implies \stackrel{simplified}{\cfrac{5}{7}}\qquad \qquad \cfrac{5}{7}=\cfrac{√(270)}{√(x)}\implies \cfrac{5}{7}=\sqrt{\cfrac{270}{x}} \\\\\\ \left( \cfrac{5}{7} \right)^2=\cfrac{270}{x}\implies \cfrac{5^2}{7^2}=\cfrac{270}{x}\implies x=\cfrac{7^2\cdot 270}{5^2}
User Ltvie
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.