127k views
1 vote
Verify that the divergence theorem is true for the vector field f on the region

e. give the flux. f(x, y, z) = 2xi + xyj + 3xzk, e is the cube bounded by the planes x = 0, x = 2, y = 0, y = 2, z = 0, and z = 2.

1 Answer

2 votes

\\abla\cdot\mathbf f(x,y,z)=(\partial(2x))/(\partial x)+(\partial(xy))/(\partial y)+(\partial(3xz))/(\partial z)=2+x+3x=4x+2

The flux across
\partial\mathcal E (boundary of
\mathcal E) is


\displaystyle\iint_(\partial\mathcal E)\mathbf f(x,y,z)\cdot\mathrm d\mathbf S=\iiint_(\mathcal E)(4x+2)\,\mathrm dV

=\displaystyle\int_(z=0)^(z=2)\int_(y=0)^(y=2)\int_(x=0)^(x=2)(4x+2)\,\mathrm dx\,\mathrm dy\,\mathrm dz=48
User Emilio Rodriguez
by
5.6k points