146k views
10 votes
What are the domain and the range of function ? f(x)=x-6/x^2-3x-18​

1 Answer

10 votes

Answer:The domain of the function is x ∈ R − { − 3 } . The range is y ∈ R − { 1 } Explanation: Factorise the numerator and denominator y = x 2 − 5 x − 6 x 2 − 3 x − 18 = ( x + 1 ) x − 6 ( x + 3 ) x − 6 = x + 1 x + 3 The denominator is ≠ 0 , therefore x + 3 ≠ 0 , ⇒ , x ≠ − 3 The domain of the function is x in RR-{-3} To determine the range, proceed as follows y = x + 1 x + 3 y ( x + 3 ) = x + 1 y x − x = 1 − 3 y x ( y − 1 ) = 1 − 3 y x = 1 − 3 y y − 1 The denominator is ≠ 0 y − 1 ≠ 0 , ⇒ , y ≠ 1 The range is y ∈ R − { 1 } graph{(x^2-5x-6)/(x^2-3x-18) [-16.02, 16.02, -8.01, 8.01]}

Step-by-step Explanation: Factorise the numerator and denominator y = x 2 − 5 x − 6 x 2 − 3 x − 18 = ( x + 1 ) x − 6 ( x + 3 ) x − 6 = x + 1 x + 3 The denominator is ≠ 0 , therefore x + 3 ≠ 0 , ⇒ , x ≠ − 3 The domain of the function is x in RR-{-3} To determine the range, proceed as follows y = x + 1 x + 3 y ( x + 3 ) = x + 1 y x − x = 1 − 3 y x ( y − 1 ) = 1 − 3 y x = 1 − 3 y y − 1

User RedPaladin
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories