16.7k views
0 votes
1. If cscθ=5/3 then secθ=

a. 25/16
b. 5/4
c. 16/25
d. 4/5

2. Simplify the expression
(cos x) (sec x) - (sin2 x)
a. cos x
b. cos2 x
c. sec2 x

3. If θ is in Quadrant IV and sinθ=-5/4 then secθ=
a. -13/12
b. -12/3
c. 12/13
d. 13/12

1 Answer

3 votes

Answer:

(1)

b.
sec(\theta)=(5)/(4)

(2)

b.
cos^2(x)

(3)


sec(\theta)=(13)/(12)


Explanation:

(1)

we are given


csc(\theta)=(5)/(3)

we can use triangle method

we know that

csc=hyp/ opposite

so, hyp=5

opposite =3

now, we can find adjacent

we can use Pythagoras theorem


hyp^2=opp^2+adj^2


5^2=3^2+adj^2


adj=4

now, we can find sec


sec(\theta)=(5)/(4)


(2)

we are given


(cosx)(secx)-sin^2(x)

we can simplify it


(cosx)* ((1)/(cosx))-sin^2(x)


1-sin^2(x)

now, we can replace 1 as sin^2x +cos^2x

we get


sin^2(x)+cos^2(x)-sin^2(x)


=cos^2(x)

(3)

we are given

θ is in Quadrant IV


sin(\theta)=(-5)/(13)

we know that

sin =opp/hyp

so, opp=5

hyp=13

now, we can use Pythagoras theorem


hyp^2=opp^2+adj^2

now, we can plug values


13^2=5^2+adj^2


adj=12

sec=hyp/adj

so, we get


sec(\theta)=(13)/(12)


User Andres Martinez
by
8.9k points