25.1k views
5 votes
How to prove this???

How to prove this???-example-1
User Chelle
by
7.1k points

1 Answer

4 votes

\cos^3 2A + 3 \cos 2A \\ \Rightarrow \cos 2A (\cos^2 2A + 3) \\ \Rightarrow (\cos^2 A - \sin^2 A) (\cos^2 2A + 3) \\ \Rightarrow (\cos^2 A - \sin^2 A) (1 - \sin^2 2A + 3) \\ \Rightarrow (\cos^2 A - \sin^2 A) (4 - \sin^2 2A) \\ \Rightarrow (\cos^2 A - \sin^2 A) (4 - (2\sin A \cos A)(2\sin A \cos A)) \\ \Rightarrow (\cos^2 A - \sin^2 A) (4 - 4\sin^2 A \cos^2 A) \\ \Rightarrow 4(\cos^2 A - \sin^2 A) (1 - \sin^2 A \cos^2 A)

go to right side now


4( \cos^6 A - \sin^6 A)\\ \Rightarrow 4( \cos^3 A - \sin^3 A)(\cos^3 A + \sin^3 A)

use
x^3 - y^3 = (x-y)(x^2 + xy + y^2) and
x^3 + y^3 = x^2 - xy + y^2


4( \cos^6 A - \sin^6 A)\\ \Rightarrow 4( \cos^3 A - \sin^3 A)(\cos^3 A + \sin^3 A) \\ \Rightarrow 4(\cos A - \sin A)(\cos^2 A + \cos A \sin A + \sin^2 A) \\ ~\quad \quad\cdot ( \cos A + \sin A)(\cos^2 A - \cos A \sin A + \cos^2 A)

so
\sin^2 A + \cos^2 A = 1


4( \cos^6 A - \sin^6 A)\\ \Rightarrow 4(\cos A - \sin A)(\cos^2 A + \cos A \sin A + \sin^2 A) \\ ~\quad \quad\cdot ( \cos A + \sin A)(\cos^2 A - \cos A \sin A + \cos^2 A) \\ \Rightarrow 4(\cos^2 A - \sin^2 A)(1 + \cos A \sin A )(1- \cos A \sin A ) \\ \Rightarrow 4(\cos^2 A - \sin^2 A)(1 - \cos^2 A \sin^2 A )\\ \Rightarrow 4(\cos^2 A - \sin^2 A)(1 - \sin^2 A \cos^2 A ) \\ \Rightarrow Left hand side
User Jonny Rimek
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.