7.4k views
3 votes
Given the functions f(x) = left parenthesis 2 x right parenthesis squared plus  x  minus 1 

g(x) = x squared plus 3 x minus 3

Find:

A. f(x) + g(x)

B. f(x) - g(x)

C. 2f(x) + 2g(x)

D. 2f(x) -2g(x)

User Gbs
by
8.5k points

1 Answer

1 vote
I'm going to rewrite f(x) and g(x) so that I don't get confused.

Based on your description:

f(x) = (2x)
^(2) + x - 1 simplified to 4x
^(2) + x - 1

g(x) = x
^(2) + 3x - 3

Now we handle parts A-D.

A. f(x) + g(x)

We combine like terms.

4x
^(2) + 5x
^(2) + x + 3x - 1 - 3 = 5x
^(2) + 4x - 4

B. f(x) - g(x)

Again combine like terms like normal except this time subtracting.

4x
^(2) - x
^(2) + x - 3x - 1 - (- 3) = 3x
^(2) - 2x + 2

C. 2f(x) + 2g(x)

Multiply, then again CLT

2f(x) = 8x
^(2) + 2x - 2
2g(x) = 2x
^(2) + 6x - 6

Combine like terms to get 10x
^(2) + 8x - 8

D. 2f(x) - 2g(x)

Use the same 2f(x) and 2g(x) terms and this time just subtract.

You get 6x
^(2) - 4x + 4


User Gerald Chifanzwa
by
8.1k points