162k views
2 votes
A norman window has the shape of a semicircle atop a rectangle so that the diameter of the semicircle is equal to the width of the rectangle. what is the area of the largest possible norman window with a perimeter of 50 feet?

User Heug
by
5.5k points

1 Answer

2 votes
The area largest possible for norman with a perimeter of 50ft is equal to
50r-2r^2-πr^2+(πr^2)/2
because of A=b*h+(πr^2)/2
h=25-r-(πr)/2
b=2r
A=2rh+(πr^2)/2
A=2r(25-r-(πr)/2)+(πr^2)/2
A=50r-2r^2-πr^2+(πr^2)/2

User Kites
by
5.4k points