219k views
20 votes
A train starts from rest at station A and accelerates at 0.4 m/s^2 for 60 s. Afterwards it travels with a constant velocity for 25 min. It then decelerates at 0.8 m/s^2 until it is brought to rest at station B.

Determine the distance between the stations. ?s^Delta s = _______.

1 Answer

5 votes

The distance between the two stations is 37.08 km


\\

Step-by-step explanation:

Given:


a_1 \:=\:0.4\:m/s²


t_1 \:=\:60\:s


v_(i1) \:=\:0\:m/s


a_2 \:=\:0\:m/s²


t_2 \:=\:25\:min\:=\:1500\:s


a_3 \:=\:-0.8\:m/s²


v_(f3) \:=\:0\:m/s


\\

Required:

Distance from Station A to Station B


\\

Equation:


a\:=\:(v_f\:-\:v_i)/(t)


v_(ave)\:=\:(v_i\:+\:v_f)/(2)


v\:=\:(d)/(t)


\\

Solution:

Distance when a = 0.4 m/s²

Solve for
v_(f1)


a\:=\:(v_f\:-\:v_i)/(t)


0.4\:m/s²\:=\:(v_f\:-\:0\:m/s)/(60\:s)


24\:m/s\:=\:v_f\:-\:0\:m/s


v_f\:=\:24\:m/s


\\

Solve for
v_(ave1)


v_(ave)\:=\:(v_i\:+\:v_f)/(2)


v_(ave)\:=\:(0\:m/s\:+\:24\:m/s)/(2)


v_(ave)\:=\:12\:m/s


\\

Solve for
d_1


v\:=\:(d)/(t)


12\:m/s\:=\:(d)/(60\:s)


720\:m\:=\:d


d_1\:=\:720\:m


\\

Distance when a = 0 m/s²


v_(f1)\:=\:v_(i2)


v_(i2)\:=\:24\:m/s


\\

Solve for
v_(f2)


a\:=\:(v_f\:-\:v_i)/(t)


0\:m/s²\:=\:(v_f\:-\:24\:m/s)/(1500\:s)


0\:=\:v_f\:-\:24\:m/s


v_f\:=\:24\:m/s


\\

Solve for
v_(ave2)


v_(ave)\:=\:(v_i\:+\:v_f)/(2)


v_(ave)\:=\:(24\:m/s\:+\:24\:m/s)/(2)


v_(ave)\:=\:24\:m/s


\\

Solve for
d_2


v\:=\:(d)/(t)


24\:m/s\:=\:(d)/(1500\:s)


36,000\:m\:=\:d


d_2\:=\:36,000\:m


\\

Distance when a = -0.8 m/s²


v_(f2)\:=\:v_(i3)


v_(i3)\:=\:24\:m/s


\\

Solve for
v_(f3)


a\:=\:(v_f\:-\:v_i)/(t)


-0.8\:m/s²\:=\:(0\:-\:24\:m/s)/(t)


(t)(-0.8\:m/s²)\:=\:-24\:m/s


t\:=\:(-24\:m/s)/(-0.8\:m/s²)


t\:=\:30\:s


\\

Solve for
v_(ave3)


v_(ave)\:=\:(v_i\:+\:v_f)/(2)


v_(ave)\:=\:(24\:m/s\:+\:0\:m/s)/(2)


v_(ave)\:=\:12\:m/s


\\

Solve for
d_3


v\:=\:(d)/(t)


12\:m/s\:=\:(d)/(30\:s)


360\:m\:=\:d


d_3\:=\:360\:m


\\

Total Distance from Station A to Station B


d\:= \:d_1\:+\:d_2\:+\:d_3


d\:= \:720\:m\:+\:36,000\:m\:+\:360\:m


d\:= \:37,080\:m


d\:= \:37.08\:km


\\

Final Answer:

The distance between the two stations is 37.08 km

User Zaphoyd
by
4.9k points