135k views
4 votes
To the nearest tenth, find the perimeter of ∆ABC with vertices A(-1,4), B(-2,1) and C(2,1). Show your work.

PLEASE HELP

1 Answer

7 votes
A=(-1,4)=(xa,ya)→xa=-1, ya=4
B=(-2,1)=(xb,yb)→xb=-2, yb=1
C=(2,1)=(xc,yc)→xc=2, yc=1

Perimeter of ∆ABC: P=AB+BC+AC

AB=d A-B=sqrt [ (xb-xa)^2+(yb-ya)^2 ]
AB=sqrt [ (-2-(-1))^2+(1-4)^2]
AB=sqrt [ (-2+1)^2+(-3)^2]
AB=sqrt [ (-1)^2+9]
AB=sqrt [ 1+9]
AB=sqrt [10]
AB=3.162277660

BC=d B-C=sqrt [ (xc-xb)^2+(yc-yb)^2 ]
BC=sqrt [ (2-(-2))^2+(1-1)^2]
BC=sqrt [ (2+2)^2+(0)^2]
BC=sqrt [ (4)^2+0]
BC=sqrt [ 16+0]
BC=sqrt [16]
BC=4

AC=d A-C=sqrt [ (xc-xa)^2+(yc-ya)^2 ]
AC=sqrt [ (2-(-1))^2+(1-4)^2]
AC=sqrt [ (2+1)^2+(-3)^2]
AC=sqrt [ (3)^2+9]
AC=sqrt [ 9+9]
AC=sqrt [9*2]
AC=sqrt [9] * sqrt [2]
AC=3 sqrt [2]
AC=3 (1.414213562)
AC=4.242640686

P=AB+BC+AC
P=3.162277660+4+4.242640686
P=11.40491834
To the nearest tenth:
P=11.4

Answer: The perimeter of ∆ABC is 11.4 units
User Matt Faus
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories